|
2024 |
|
Larger language models do in-context learning differently. |
|
J. Wei, J. Wei, Y. Tay, D. Tran, A. Webson, Y. Lu, X. Chen, H. Liu, D. Huang, D. Zhou, and T. Ma. |
|
Google AI blog |
JMLR '24 |
Scaling instruction-finetuned language models. |
|
{H. W. Chung, L. Hou, S. Longpre}, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. Dehghani, S. Brahma, A. Webson, S. Gu, Z. Dai, M. Suzgun, X. Chen, A. Chowdhery, A. Castro-Ros, M. Pellat, K. Robinson, D. Valter, S. Narang, G. Mishra, A. Yu, V. Zhao, Y. Huang, A. Dai, H. Yu, S. Petrov, E. Chi, J. Dean, J. Devlin, A. Roberts, D. Zhou, Q. Le, and J. Wei. |
|
Google AI blog |
NAACL '24' |
A pretrainer's guide to training data: Measuring the effects of data age, domain coverage, quality, & toxicity (outstanding paper award). |
|
S. Longpre, G. Yauney, E. Reif, K. Lee, A. Roberts, B. Zoph, D. Zhou, J. Wei, K. Robinson, D. Mimno, and D. Ippolito. |
ICLR '24 |
Mixture-of-experts meets instruction tuning: A winning combination for large language models. |
|
S. Shen, L. Hou, Y. Zhou, N. Du, S. Longpre, J. Wei, H. W. Chung, B. Zoph, W. Fedus, X. Chen, T. Vu, Y. Wu, W. Chen, A. Webson, Y. Li, V. Zhao, H. Yu, K. Keutzer, T. Darrell, and D. Zhou.
|
|
2023 |
EMNLP '23 |
Inverse scaling can become U-shaped. |
|
{J. Wei, N. Kim}, Y. Tay, and Q. Le. |
EMNLP '23 |
Transcending scaling laws with 0.1% extra compute. |
|
Y. Tay, J. Wei, H. W. Chung, V. Tran, D. So, S. Shakeri, X. Garcia, H. Zheng, J. Rao, A. Chowdhery, D. Zhou, D. Metzler, S. Petrov, N. Houlsby, Q. Le, and M. Dehghani. |
Nature '23 |
Large language models encode clinical knowledge. |
|
K. Singhal, S. Azizi, T. Tu, S. Mahdavi, J. Wei, H. Chung, N. Scales, A. Tanwani, H. Cole-Lewis, S. Pfohl, P. Payne, M. Seneviratne, P. Gamble, C. Kelly, N. Scharli, A. Chowdhery, P. Mansfield, B. Aguera y Arcas, D. Webster, G. Corrado, Y. Matias, K. Chou, J. Gottweis, N. Tomasev, Y. Liu, A. Rajkomar, J. Barral, C. Semturs, A. Karthikesalingam, and V. Natarajan. |
ICML '23 |
The Flan Collection: Designing data and methods for effective instruction tuning. |
|
S. Longpre, L. Hou, T. Vu, A. Webson, H. Chung, Y. Tay, D. Zhou, Q. Le, B. Zoph, J. Wei, and A. Roberts. |
|
Google AI blog |
ACL '23 |
Challenging BIG-Bench tasks and whether chain-of-thought can solve them. |
(Findings) |
M. Suzgun, N. Scales, N. Schärli, S. Gehrmann, Y. Tay, H. W. Chung, A. Chowdhery, Q. Le, E. Chi, D. Zhou, and J. Wei. |
ICLR '23 |
Language models are multilingual chain-of-thought reasoners. |
|
{F. Shi, M. Suzgun}, M. Freitag, X. Wang, S. Srivats, S. Vosoughi, H. W. Chung, Y. Tay, S. Ruder, D. Zhou, D. Das, and J. Wei. |
ICLR '23 |
Self-consistency improves chain of thought reasoning in language models. |
|
X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou. |
ICLR '23 |
UL2: Unifying language learning paradigms. |
|
Y. Tay, M. Dehghani, V. Tran, X. Garcia, J. Wei, X. Wang, H. Chung, D. Bahri, T. Schuster, H. Zheng, D. Zhou, N. Houlsby, and D. Metzler. |
ICLR '23 |
Least-to-most prompting enables complex reasoning in large language models. |
|
D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, O. Bousquet, C. Cui, Q. Le, and E. Chi. |
ICLR '23 |
Mind's Eye: Grounded language model reasoning through simulation. |
|
R. Liu, J. Wei, S. Gu, T. Wu, S. Vosoughi, C. Cui, D. Zhou, and A. Dai. |
JMLR '23 |
PaLM: Scaling language modeling with Pathways. |
|
{A. Chowdhery, S. Narang, J. Devlin} and 64 additional authors including J. Wei. |
|
Google AI blog |
|
2022 |
TMLR '22 |
Emergent abilities of large language models. |
|
J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou, D. Metzler, E. Chi, T. Hashimoto, O. Vinyals, P. Liang, J. Dean, and W. Fedus. |
|
Google AI blog / Stanford HAI blog |
NeurIPS '22 |
Chain-of-thought prompting elicits reasoning in large language models. |
|
J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou. |
|
Sundar explains chain of thought prompting at Google I/O 2022 / Google AI blog |
ACL '22 |
A recipe for arbitrary text style transfer with large language models. |
|
{E. Reif, D. Ippolito}, A. Yuan, A. Coenen, C. Callison-Burch, and J. Wei. |
ICLR '22 |
Finetuned language models are zero-shot learners. |
|
{J. Wei, M. Bosma, V. Zhao, K. Guu}, A. Yu, B. Lester, N. Du, A. Dai, and Q. Le. |
|
Google AI blog / oral |
ICLR '22 |
The MultiBERTs: BERT reproductions for robustness analysis. |
|
{T. Sellam, S. Yadlowsky}, I. Tenney, J. Wei, N. Saphra, A. D'Amour, T. Linzen, J. Bastings, I. Turc, J. Eisenstein, D. Das, and E. Pavlick. |
|
2021 |
EMNLP '21 |
Frequency effects on syntactic rule learning in transformers. |
|
J. Wei, D. Garrette, T. Linzen, and E. Pavlick. Google AI blog / oral |
EMNLP '21 |
Good-enough example extrapolation. |
|
J. Wei. |
ACL '21 |
A cognitive regularizer for language modeling. |
|
J. Wei, C. Meister, and R. Cotterell. |
ACL '21 |
Language model augmented relevance score. |
|
R. Liu, J. Wei, and S. Vosoughi. |
ACL '21 |
A survey of data augmentation approaches for NLP. |
(Findings) |
{S. Feng, V. Gangal}, J. Wei, S. Chandar, S. Vosoughi, T. Mitamura, and E. Hovy. |
ACL '21 |
Modulating language models with emotions. |
(Findings) |
R. Liu, J. Wei, C. Jia, and S. Vosoughi. |
NAACL '21 |
Linguistic complexity loss in text-based therapy. |
|
J. Wei, K. Finn, E. Templeton, T. Wheatley, and S. Vosoughi. |
NAACL '21 |
Few-shot text classification with triplet networks, data augmentation, and curriculum learning. |
|
J. Wei, C. Huang, S. Vosoughi, Y. Cheng, and S. Xu. |
EACL '21 |
Text augmentation in a multi-task view. |
|
J. Wei, C. Huang, S. Xu, and S. Vosoughi. |
AAAI '21 |
Mitigating political bias in language models through reinforced calibration (outstanding paper). |
|
R. Liu, C. Jia, J. Wei, G. Xu, L. Wang, and S. Vosoughi. |
|
2019 |
EMNLP '19 |
Easy data augmentation techniques for boosting performance on text classification tasks. |
|
J. Wei and K. Zou. |